Stability of the Accretion Flows with Stalled Shocks in Core-Collapse Supernovae

```
T.Yamasaki (CEA-Saclay, France)
S.Yamada (Waseda Univ., Japan)
```

References: Y&Y, ApJ 650,291 (2006)

Y&Y, ApJ 656,1019 (2007)

§ Introduction

- Observations suggest that the explosions are asymmetry (polarization, pulsar kick, images of 1987A).
- Multi dimensional simulations indicate that the accretion flows in SNe are unstable against asymmetric pertrubations.
- Hydrodynamical instability is one of the key ingredients of asymmetry (and possibly explosion).

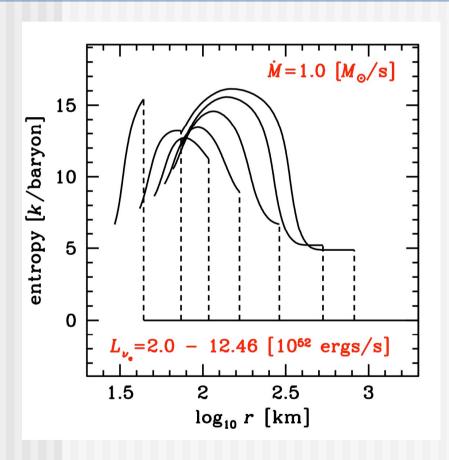
```
Known instability mechanisms:
convection,
advection-acoustic cycle (Foglizzo 2000, 2001, 2002),
```

§ This study

We investigated the stability systematically.

- 1. First, we found steady solutions which mimic the accretion flow with a stalled shock in the core-collapse supernovae, assuming that the neutrino luminosity and the mass accretion rate are constant parameters.
- 2. Then the stability of the steady solutions was investigated by global analysis.
- ★ The realistic equation of state by Shen is employed.
- We took into accout both neutrino heating and cooling, adopting the realistic reaction rates by Bruenn (1985).

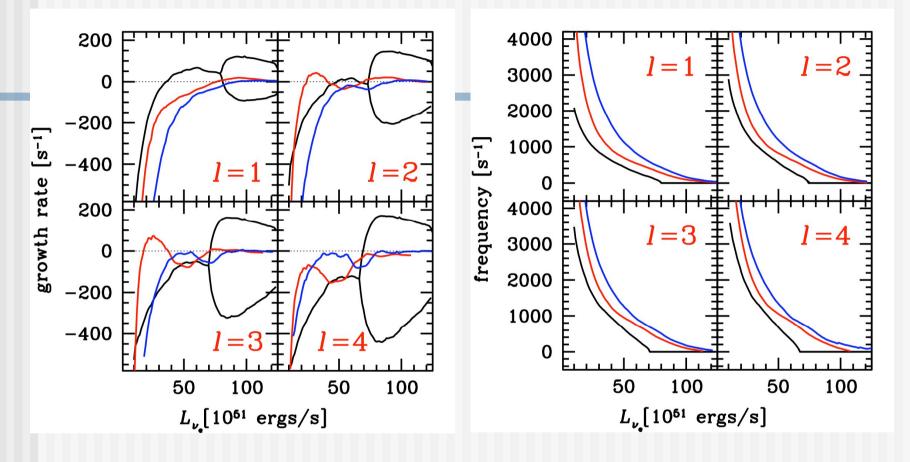
§ Assumptions


We consider the region between shock and neutrino-sphere.

- 1. Steady flows are spherically symmetric.
- Neutrino thin approximation is adopted (i.e., neutrino transfer is not solved).
- 3. Newtonian gravity is adopted.

Boundary conditions

- a) Flow outside of the shock is cold free-fall one.
- At the inner boundary (neutrino-sphere), the perturbation of the radial velocity vanishes.
- Perturbations are expanded in the spherical harmonics, and radial dependence of the perturbations are solved globally.


§ Steady solutions

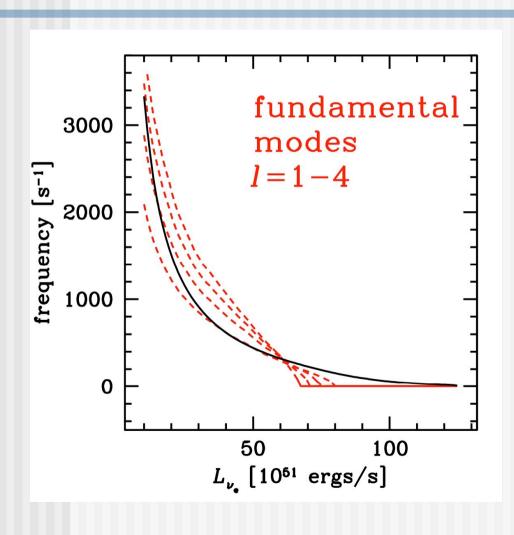
- When the neutrino luminosity exceeds the critical value (12.46•10⁵²[ergs/s], for accretion rate 1.0 [M_☉/s]), there exist no steady solutions (Burrows & Goshy 1993).
- When the neutrino luminosity is larger than about 4.0•10⁵²[ergs/s] (for accretion rate 1.0 [M_☉/s]), there is the heating layer where the entropy gradient is negative in the radial direction.

§ Results

growth rates and frequencies

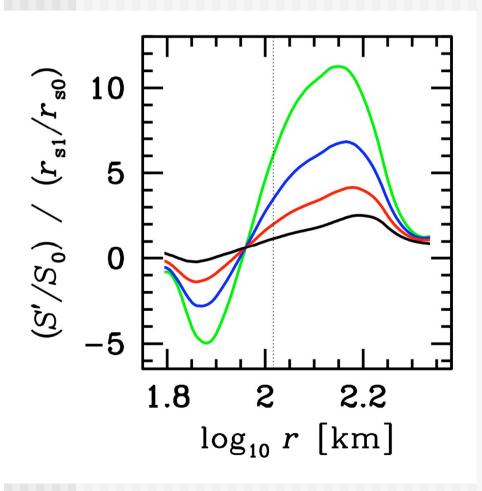
- 1. $L_{\nu} < 1.10^{52} [ergs/s]$
- 2. $2 < L_v < 4.10^{52} [ergs/s]$
- 3. $3 < L_v < 7 \cdot 10^{52} [ergs/s]$
- 4. $L_{\nu} > 7 \cdot 10^{52} [\text{ergs/s}]$

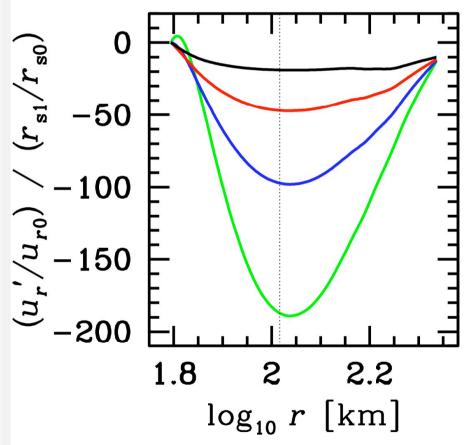
No unstable mode.

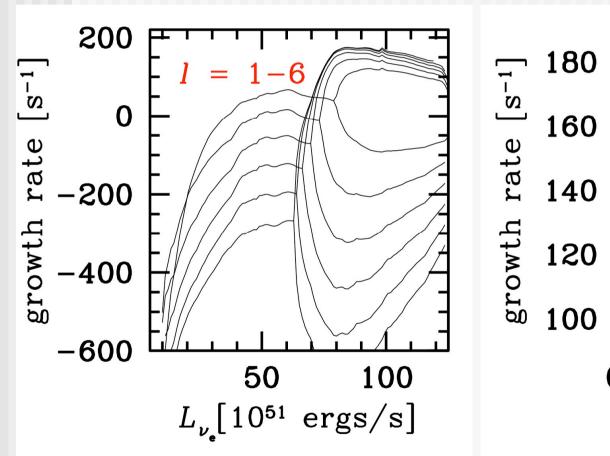

I =2,3 oscillatory modes grow (advection-acoustic).

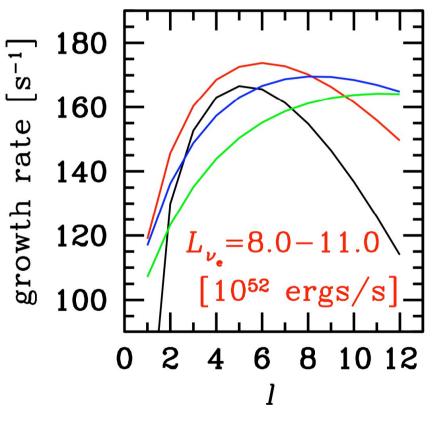
I=1,2 oscillatory modes grow (advection-acoustic).

Non-oscillatory modes grow (convection).


I=5 -11 grows fastest (c.f. Foglizzo et al. 2006).


Frequencies for oscillatory modes


- Frequencies are consistent with those predicted by the advection-acoustic cycle.
- → The oscillatory modes are likely to be the advection-acoustic cycle (Foglizzo et al. 2007).
- ★ The stability of the oscillatory modes are affected quantitatively by the inner boundary condition (whereas non-oscillatory modes are not).


Eigen-functions of non-oscillatory modes

Growth rates for convective modes

§ Summary

```
For mass accretion rate 1.0 [M_{\odot}/s],
```

- 1) $L_v > 12.46 \cdot 10^{52} [ergs/s]$ No steady solutions.
- 2) $L_{\nu} > 4 \cdot 10^{52} [ergs/s]$ Heating region emerges.
- 1. $L_{\nu} < 1 \cdot 10^{52} [ergs/s]$ No unstable mode.
- 2. $2 < L_v < 4.10^{52}$ [ergs/s] l = 2.3 advection-acoustic modes grow.
- 3. $3 < L_{\nu} < 7.10^{52} [ergs/s]$ l = 1,2 advection-acoustic modes grow.
- 4. $L_{\nu} > 7 \cdot 10^{52} [ergs/s]$ Convective modes grow (l = 5 11 grow fastest).
- ★ Even when the radial gradient of entropy is negative, the convection does not always take place because of the advection (Foglizzo et al. '06).
- The advection-acoustic cycle and the convection become important in different aspects.